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SUMMARY

In the present paper some implementation aspects of a parallel model for the solution of the
large-scale systems deriving from non-conventional finite element formulations are presented.
Results obtained when this implementation is used for conventional finite element formulation
are also presented. A comparison is made between alternative variants of the Conjugate
Gradient algorithm for the parallel solution of the linear system, based on a subdomain division
technique.
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1. INTRODUCTION

The non-conventional finite element formulations developed within the Structural Analysis
Group at IST, are by their nature, suitable for parallel processing [1]. Most of the formulations
lead to systems of large dimension, with a non-overlapping sparse block structure. These
formulations use coarse meshes with approximation functions of high degree, which allow to
use an element by element parallelisation technique, which makes them attractive when
implemented on a distributed platform.
In the numerical implementation process it becomes clear that only by using appropriate data
structures it is possible to take full advantage of these characteristics. In this paper we present
an implementation of such data structures, which tries to satisfy a set of objectives that were
specifically taken into consideration:

• to gain as much as possible in terms of speed up and efficiency,

• to preserve generality and robustness, allowing to use all non-conventional and
conventional formulations,

• to efficiently organise the communications required by the parallel computation using a
conjugate gradient method.

To achieve these goals appropriate data structures were designed, to describe the finite
element mesh, allowing for an efficient determination of the relations between sides, elements
and nodes.
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A second class of data structures was developed to split up the coefficients matrix in such a
way that the identification between the logical division of the solution vector with the
corresponding processor is easily done.

2. DATA STRUCTURE FOR TOPOLOGICAL MODELLING

The core of the data structures used for the geometrical or topological manipulation of a two
dimensional model, is the winged-edge data structure, proposed by Mantÿlla [3, 9]. This data
structure fully describes the components of a 2D finite element mesh, elements (faces), edges
and nodes and their topological relations. Each Loop is an element in the mesh description,
the Node and the Edge have the same meaning as in the finite element mesh.

The data structures were initially developed for the Hybrid Mixed model [5], and redesigned
to allow their use irrespective of the formulation. They have been tested successfully for a
conventional nodal formulation.
One of the advantage of these data structures is that all the procedures which operate on these
components (e.g to identify the edges connected to a node, to identify the nodes/edges of an
element or to find the adjacent elements) can be efficiently implemented and the computational
cost is proportional to the number of entities locally involved.
These structures can be calculated by processing a "standard" finite element data file or
computed and used within the mesh generator [11], which may be coupled with the analysis
program.
To handle specific aspects about each finite element formulation e.g. approximation functions
or material definitions, data substructures termed Local, were developed for each topological
entity. One of the functions of these Local structures is to keep the mapping information
between the topological entities, structural variables and structural matrices, expressed by
pointers.

3. DATA STRUCTURES FOR MATRIX AND VECTOR STORAGE

For conventional finite element models the variables associated with the nodes that belong to
shared edges are shared between processors when a domain decomposition is used to split up
the data for distributed computation. For non-conventional finite element formulations the
shared variables are associated with the shared edges. Two data structures were defined to
handle this variety of perspectives about similar problems, the Part and the Block. Each
Part corresponds to a logical subdivision in the finite element mesh, keeping the information
required for inter processor communication. Each Block is the matrix describing the
behaviour of the corresponding Parts, about which it keeps information.

3.1. Implementation aspects for the Part and Block structures

The components of the Part and Block structure are shown in Tab.l. These data structures
are created only at subdomain level and they are inserted in chained lists.
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struct Block struct Part
{ {

Part *row, *column; int id, number;
/* matrix storage */ int NSubDomains, *SubDomains;
int nonzeros, *irow, *icolumn; int Dimension;
double *vals; double *x[MAX_VECTORS];

... ...
Block *previous, *next; Part *previous, *next;

}; };

Tab. 1: Data structures for matrix and vector storage.

The coefficients of the matrices are kept in each Block using a sparse (row, column, value)
and symmetric format.
In the Part data structure, information is held about the dimension of the corresponding
vectors. The NSubDomains field is used to identify if the data is local. The subdomains that
share the part are indicated by *SubDomains. The variable number holds in a condensed
form the same information.

Conventional FEM Non-conventional FEM
Node∈Part Node∉Part
Edge∉Part Edge∈Part
Loop∉Part Loop∈Part

Tab. 2: Links between topological and Part data structures.

The links between the Local data structures of the topological entities (which induce
structural variables) and the Part structures are formulation dependent, as shown in Tab.2 for
conventional and non-conventional formulations. Other combinations of these can be carried
out.

3.2. Data distribution and mapping

The data distribution scheme established in the experimental implementation is general and
applies to any finite element mesh. The subdomain data set includes all Nodes, Edges and
Loops of the subdomain and a "halo" copy of all the Edges connected to the boundary nodes
and all the Loops adjacent to the boundary nodes. In this way the information necessary to
prepare all communications can be locally computed. The partition of a simple finite element
mesh into three subdomains, is exemplified in Fig.l.a.
Each Part is responsible for a set of variables. The numbering of the variables in each Part
starts from zero, thus each Part identified by the same number holds the same structural
variable set on all processors.
In what follows we will present a simple approach for setting up the Part structures. All mesh
entities, which induce structural variables, as defined in Tab.2, are checked and the following
variables, which identify the corresponding Parts are computed:

• the number of the subdomains which share that entity;

• the sutidomain list;
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• a unique number associated to the Bach subdomain list;
• the number of associated variables;

A search of the Part fist is done to check if a Part with the same unique number already
exists. If such a Part exists, the Part pointer is set to the mesh entity in the Local
structure. The offset value of the variable or variables set is also determined. If the search
result is zero, then a new Part will be created and inserted in the Part list.

The Parts for a non-conventional formulation and for a conventional (variables associated
with nodes) formulation are identified on Fig.l.a and Fig.l.b, respectively.

Fig. 1: Parts identification and global structural matrix building blocks for non-conventional
and conventional formulations.

The system in each subdomain is described by a matrix of pointers to Blocks with n x n
dimension, where n is the number of Parts in each subdomain. After the structural matrix
computation has been completed the empty blocks are eliminated. For non-conventional
formulations the contributions of each edge/element do not overlap with other contributions,
see Fig.l.c, unlike for conventional formulations where the coefficients are obtained by
summing the contributions of adjacent elements, represented by Part2, Part4, Part5,
Part6 in Fig.l.d. This step is performed after inserting the coefficients in each Block and
reordering them by column and row.
The matrix vector products are performed at subdomain level multiplying each Block by the
corresponding column Part and adding the result to the row Part, as detailed in [5]. After
these calculations have been performed the result obtained in each shared Part (the ones that
belong to more than one subdomain) is sent to the neighbour(s), while expecting to receive as
many sets of values as the number of neighbours.

4. DESCRIPTION OF THE FORMULATION

The finite element model used [4] is the implementation of the Stress Hybrid Mixed
formulation described in [6] for digital Walsh approximation functions.
The only requirement imposed on the approximation functions by the finite element
formulation is that they must span a basis for an L2 function space. This makes possible the use
of these discontinuous functions in the finite element model.
In the resulting governing systems the elementary matrices as well as the structural matrix are
very sparse in nature due to the orthogonality of the approximation functions.
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Due to the very coarse nature of the digital functions, "accurate" results can only be obtained
for meshes with a very high number of degrees of freedom. Normally this is obtained with
coarse meshes of elements of high degree.
A condensed form of the system can be obtained by eliminating different sets of variables.
Here a condensed form of the governing system is used after an elimination of the internal
degrees of freedom of each subdomain. The resulting system is the Schur complement of the
shared variables, which is used in the parallel computation.

5. ALTERNATIVE CG METHODS FOR THE PARALLEL SOLUTION OF THE
FINITE ELEMENT GOVERNING SYSTEM

The Conjugate Gradient algorithm [8] is widely used to solve linear systems A x = b, where A
is a symmetric positive definite matrix. The method does not require a factorisation of the
matrix, and is well suited to parallelisation.
The standard non-preconditioned CG method requires one matrix vector multiplication, two
global inner products and three global vector updates at each iteration step. In a distributed
environment the two inner products and the matrix vector multiplication require
communications between the processors.
In practical applications, to speed up convergence, the CG is used in combination with a
preconditioner [10]. If matrix M approximates the coefficient matrix A, then system M-1A x =
M-1b has an improved condition number and, consequently, faster convergence.
Various variants of the CG method were considered, namely, a global CG approach with and
without preconditioner and the Schur complement approach on the shared variables without
preconditioning.
The parallel implementation of the CG algorithm was designed on a master-slave scheme [5].
The input data is read by the master from a data file, processed and sent to the slave
processors. Concurrent elementary stiffness matrix evaluation is done and distributed CG
iterations are performed to solve the resulting system. Local and global communications and
synchronisation between the processors are performed at each iteration step using the PVM
message passing library [7]. After each iteration a test of convergence is performed
simultaneously by each processor. When convergence is achieved, the slaves can proceed with
the pre-processing step. After this step, if there is no more work to be done the slaves exit and
the computation is finished on the master.
For the non-conventional formulation tested the intervening matrices are usually very sparse
and the synchronisation of the variables is the factor that mostly affects the global performance
of the parallel CG solver. In order to avoid unwanted synchronisation points, different
alternative CG schemes were tested. Most of them are affected by rounding errors and require
the positive definiteness of A.
A rearranged version of the standard CG algorithm presented in [2] was chosen. This scheme
allows to overlap communication time with useful computations and is as stable as the original
algorithm.
Different solvers were tested to solve the internal system. Best results were obtained with a
direct solver, namely the MA47 Harwell routine.
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6. NUMERICAL EXAMPLES

To test the performance of the parallel implementation a simple example, consisting in the
static analysis of a square cantilever plate is used. The tests were performed on a single
machine and on a cluster of 4 personal computers, all equipped with 233MHz Pentium II
processors, 132Mb memory, running PVM under Linux. These machines were connected via
100 Mbit Ethernet.

Fig. 2: Execution times for different problem sizes with various CG methods.

Fig. 3: Speedup and efficiency values for the 4-element mesh with 58604 dof.

Fig. 4: Speed up and efficiency for the 16-element mesh with 59576 dof.

In Fig.2 the wall-clock times versus number of processors, P, are presented for different
problem sizes (Fig.2.a for a 4-element mesh with 58604 dof, Fig.2.b and 2.c for a 16-element
mesh with 59576 and 233912 dof, respectively) using various CG alternatives. All the
procedures perform similarly. The small differences rise from the smaller number of iterations
to achieve the convergence for CG with diagonal, CG+D, and block diagonal, CG+BD,
preconditioners. The CG on the Schur complement, CG_Schur, is only used for more than one
subdomain. This procedure gives the best results in terms of the total execution time.
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Fig. 5: Speed up and efficiency for the 16-element mesh with 233912 dof.

The speedup and efficiency values obtained from the data represented in Fig.2 are shown in
Fig.3 to 5. For the CG_Schur the reference values are taken for P=2. As the number of
elements/subdomains is small, the load distribution for three processors is necessarily
unbalanced, and in this case, there is a decrease of the parallel performance, (Figs.4 and 5).
A second set of tests was run using the simplest constant stress triangular element for the same
square cantilever plate discretized in 5098 (Mesh A) and 20198 (Mesh B) elements,
respectively. For these tests, which illustrate the successful use of the data structures
described, the total execution wall-clock Limes, Tt, the speedup, Sp, and efficiency, Ef, values
obtained are shown in Tab.3.

Mesh A - 5198 dof Mesh B - 20396 dof
P Tt [sec] Sp Ef Tt [sec] Sp E f

1 12.32 1.00 1.00 86.26 1.00 1.00

2 9.70 1.27 0.63 48.04 1.80 0.90

3 8.15 1.51 0.50 41.72 2.07 0.69

4 11.20 1.10 0.28 38.35 2.25 0.56

Tab. 3: Total execution times, speedup and efficiency values for different problem sizes for
nodal formulation.

The values obtained show a "normal" behaviour for problems with this dimension. For small
sizes there is a decrease of the parallel performance because when the number of processors is
increased, most of the time is spent on inter-processor communications.

7. CONCLUSIONS

The results obtained seem to confirm the initial expectations and satisfy the proposed goal of
generality, though the performance is not optimal in certain conditions. The use of other
message passing interfaces, namely MPI, or a "real" MIMD environment, may provide a better
understanding about the behaviour of the model.
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The Schur complement approach provides the best execution times. Various preconditioners
proposed for this strategy [10] will further improve its performance. Current work is focused
on extending the solver to other non-conventional formulations [6].
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