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APPLICATION OF THE WEIBULL DISTRIBUTION 
TO THE DESCRIPTION OF THE SKEW 
DISTRIBUTION OF CONCRETE COMPRESSIVE 
STRENGTH 

Hon. Prof. Tibor Kausay

The extremal distribution is noteworthy because, unlike the normal distribution (Gaussian distribution) and 
t-distribution (Student distribution) prevalent in engineering, it is generally asymmetric, and therefore is 
well suited for modeling the actual compressive strength distribution of concrete.
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1.  INTRODUCTION
Mistéth wrote in his studies (1974, 1977, 2000, 2001) that 
the distribution function of maximum loads follows the upper 
Weibull distribution, while that of the minimum strength 
of loadbearing materials follows the lower third extreme 
(Weibull) distribution. In accordance with Mistéth, Ujhe-
lyi (1978, 1985) wrote that probability distribution of the 
compressive strength for an average quality level concrete 
production in the lower concrete class range (below C16/20) 
or for the highly plastic consistency may be approximated by 
the log-normal distribution with right skewness (extending 
to the right with positive skewness), while in the higher 
compressive strength range (beyond C20/25) or for plastic 
consistency it may be approximated by the lower extremal 
distribution with skewness to the left (extending to the left 
with negative skewness). Compressive strength in the middle 
strength range (C16/20 – C20/25) may be considered to 
follow the normal distribution. 

2.  EXTREME VALUE 
DISTRIBUTIONS (EVD)

An extreme value is either very small or very large value in 
a probability distribution. These extreme values are found in 
the tails of a probability distribution (i.e. the distribution’s 
extremities). 

Extreme value analysis (EVA) is a branch of statistics 
dealing with the extreme deviations from the median of 
probability distributions. EVD has three types which are 
named after their most famous researchers and each type can 
be an upper (maximum) and lower (minimum), as can be seen 
in Table 1.

Based on experiments of W. Weibull (1939), for 
compressive strength distribution of brittle materials (such 
as for compressive strength distributions of higher strength 
concretes) the lower Weibull extremal value distribution 
proved to be right from among the three lower extremal value 
distribution functions (Rinne, 2009).

Type Upper or maximum  
extreme value distribution 

Lower or minimum  
extreme value distribution 

I. 
𝑔𝑔𝑔𝑔 f (𝑢𝑢𝑢𝑢 |0; 1) = e−𝑢𝑢𝑢𝑢 −𝑢−𝑢𝑢𝑢𝑢  
upper Gumbel distribution 

𝑔𝑔𝑔𝑔 a (𝑢𝑢𝑢𝑢 |0; 1) = e𝑢𝑢𝑢𝑢 −𝑢𝑢𝑢𝑢𝑢  
lower Gumbel distribution 

II. 

𝑓𝑓𝑓𝑓Fr,f (𝑢𝑢𝑢𝑢|0; 1; c) = 

= c × 𝑢𝑢𝑢𝑢−c−1 × e−𝑢𝑢𝑢𝑢−c  
upper Fréchet distribution 

𝑓𝑓𝑓𝑓Fr,a (𝑢𝑢𝑢𝑢|0; 1; c) = 

=  c × (−𝑢𝑢𝑢𝑢)−c−1  × e−(−𝑢𝑢𝑢𝑢)−c  
lower Fréchet distribution 

III. 
𝑤𝑤𝑤𝑤f (𝑢𝑢𝑢𝑢|0; 1; c) = 

=  c × (−𝑢𝑢𝑢𝑢)c−1 × e−(−𝑢𝑢𝑢𝑢)c  
upper Weibull distribution 

𝑤𝑤𝑤𝑤a (𝑢𝑢𝑢𝑢|0; 1; c) = 

=  c × 𝑢𝑢𝑢𝑢c−1 × e−𝑢𝑢𝑢𝑢c  
lower Weibull distribution 

Table 1: Density function of reduced extreme value distributions (Rinne, 2009)

https://doi.org/10.32970/CS.2022.1.3
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3.  THE WEIBULL DISTRIBUTION
In probability theory and statistics, the Weibull distribution - 
named after the Swedish mathematician Weibull (1951) - is a 
continuous probability distribution.

The most general form of Weibull’s probability density 
function has three parameters: γ - shape parameter, μ - loca-
tion parameter and α - scale parameter. The case where μ = 0 
and α = 1 is called the standard Weibull distribution. The case 
where μ = 0 is called the 2-parameter Weibull distribution. In 
the formulation of the single parameter Weibull distribution 
the only unknown parameter is the scale parameter, η, i.e. we 
assume that the shape parameter is known a priori from past 
experience with identical or similar products.

Note: in the literature different letters are used for the pa-
rameters. In this paper the shape parameter is marked with 
“c”, the location parameter with “a” and the scale parameter 
with “b”. 

The skewness coefficient is the quotient of the third order 
moment of the area under the curve of the density function 
with respect to the center of gravity (μ3) and the third power 
of the standard deviation (), (Palotás, 1979), (Hartung et al., 
2009):
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4.  DETERMINATION OF WEIBULL 
DISTRIBUTION PARAMETERS

To evaluate results of the compressive strength tests 
according to the Mistéth theory, values of location parameter 
„a”, of scale parameter „b” (in the literature also λ) and shape 
parameter „c” (in literature also k) of the Weibull distribution 
must be known. 

Our assumptions for their determination are that

	skewness factor of the single-parameter, simplified lower 
Weibull distribution equals the empirical skewness factor 
obtained from the measurements: 

γskewness,Weibull,low(u|0;1;c) = γskewness,test

	standard deviation of the two-parameter semi-simplified 
lower Weibull distribution equals to the empirical standard 
deviation obtained from the measurements: 

sWeibull,low(z|0;b;c) = stest

	mean value of the three-parameter lower Weibull 
distribution equals to the empirical average obtained from 
the measurements: 

μWeibull,low(x|a;b;c) = fcm,test,

Figure 1: Skewness factor of the single-parameter simplified Weibull distribution as a function of the shape parameter „c”  
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	difference between the mean value of the three-parameter 
lower Weibull distribution (which is considered equal 
with the empirical average) and the mean value of the 
two-parameter semi-simplified lower Weibull distribution 
equals to the value of the location parameter „a”: 
a = fcm,test – μWeibull,low(z|0;b;c).

Recommended steps for the determination of the values of 

the location parameter „a”, scale parameter „b” and shape 
parameter „c” are the following:
•	 Step 1: Into the formula of skewness factor for the single-

parameter, simplified lower Weibull distribution the 
empirical skewness factor obtained by the measurements 
(γskewness,test) is introduced and the shape parameter „c”  
value of the Weibull distribution pertinent to the empirical 
skewness factor is found by implicit iteration: 

Figure 2: Standard deviation of the z independent variable of the two-parameter lower Weibull distribution semi-simplified assuming that location 
parameter a = 0, as a function of the scale parameter „b” and the shape parameter „c”, if 1.0 ≤ b ≤ 10.0 and if 1.0 ≤ c ≤ 10.0

Figure 3: Standard deviation of the z independent variable of the two-parameter lower Weibull distribution semi-simplified by setting the location 
parameter „a” to 0, as a function of the scale parameter „b” and shape parameter „c”, if 10.0 ≤ b ≤ 50.0 and if 1.0 ≤ c ≤ 10.0
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Figure 4: The quotient of the standard deviation/scale parameter quotient (  of the semi-simplified two-parameter lower Weibull distribution (which 
is proportional to the standard deviation) as function of the shape parameter „c”

Figure 5: Squared standard deviation/scale parameter quotient ( �Ψ𝑐𝑐𝑐𝑐  

 

) of the semi-simplified two-parameter lower Weibull distribution proportional 
to the square of the standard deviation as a function of the shape parameter „c”
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Upon the successive approximation (iteration), calculation 
of skewness factor of the single-parameter lower Weibull 
distribution is repeated until a value approaching the 

empirical skewness factor best (e.g. to three decimals) is 
obtained. Figure 1 may assist this procedure.

•	 Step 2: Into the formula of the standard deviation of the 
two-parameter semi-simplified lower Weibull distribution 
the already known value of the shape parameter c and the 
value of the empirical standard deviation of the concrete 

Figure 6: Expected mean value of the z independent variable of the two-parameter lower Weibull distribution semi-simplified by the location 
parameter „a” as a function of the scale parameter „b” and shape parameter „c”, if 1.0 ≤ b ≤ 10.0 and if 1.0 ≤ c ≤ 10.0

Figure 7: Expected mean value of the z independent variable of the two-parameter lower Weibull distribution semi-simplified by the location 
parameter „a” as a function of the scale parameter „b” and shape parameter „c”, if 10.0 ≤ b ≤ 50.0 and if 1.0 ≤ c ≤ 10.0 
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Figure 8: Nomogram for determination of parameters to the lower Weibull distribution
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Figure 9: Demonstration for the solution process of the numerical examples in a nomogram
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compressive strength obtained from the measurements 
(stest) are taken into account and the value of the scale 
parameter b of the Weibull distribution pertinent to the 
empirical standard deviation is found by implicit iteration: 
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Upon the successive iteration, calculation of skewness factor 
of the two-parameter lower Weibull distribution is repeated 
with input of different b values until a best value approaching 
the empirical skewness factor (e.g. to three decimals) is 
obtained. Figures 2 and 3 can assist this procedure. These 
figures show diagrams of standard deviation for the z 
independent variable of the semi-simplified two-parameter 
lower Weibull distribution as a function of the scale parameter 
„b” and the shape parameter „c”. 
Figures 4 and 5 might also be of help: here diagrams for the 
z independent variable of the semi-simplified two-parameter 
lower Weibull distribution are shown: the standard deviation/
scale parameter quotient 
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and the square of the standard deviation/scale parameter 
quotient
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Calculated value of the shape parameter „c” can be refined by 
the use of the scale parameter „b”, if required.

•	 Step 3: Mean value of μWeibull,low(z|0;b;c) for the two-
parameter semi-simpified lower Weibull distribution is 
calculated by implicit iteration using the (already known) 
values of the scale parameter „b”  and shape parameter „c” :
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Figures 6 and 7 show diagrams of the mean value 
μWeibull,low(z|0;b;c) for the two-parameter semi-simplified 
lower Weibull distribution, depicted as a function of scale 
parameter „b”  and shape parameter „c”.

Table 2: Numerical examples for application of the lower Weibull extreme value distribution in case of concrete strength evaluation

Sign of the numerical example

1. 2. 3. 4. 5. 6.

Initial data

Concrete compressive strength class, EN 1992-1-1:2004+A1:2014 Eurocode 2

C16/20 C20/25 C25/30 C30/37 C35/45 C40/50

Empirical average of concrete compressive strength, N/mm2, fcm,cyl,test

EN 1992-1-1:2004+A1:2014 Eurocode 2

24 28 33 38 43 48

Empirical standard deviation of concrete compressive strength, N/mm2, stest

3,40 3,45 3,50 3,55 3,60 3,65

Empirical relative standard deviation of concrete compressive strength, srel,test

0,142 0,123 0,106 0,093 0,084 0,076

Empirical skewness factor of concrete compressive strength, γskewness,test

+0,07 -0,05 -0,21 -0,37 -0,52 -0,68

Result of the calculation

Mean value of the single-parameter simplified Weibull distribution, 

0,897 0,904 0,915 0,927 0,941 0,955

Mean value of the two-parameter semi-simplified Weibull distribution, 

10,271 11,802 14,436 18,230 23,660 33,430

Location parameter „a” of the Weibull distribution

13,729 16,198 18,564 19,770 19,340 14,570

Scale parameter „b” of the Weibull distribution

11,445 13,054 15,780 19,656 25,157 34,992

Shape parameter „c” of the Weibull distribution

3,329 3,822 4,698 5,968 7,787 11,080

Empirical characteristic value of concrete compressive strength with Weibull distribution  
(5% quantile), N/mm2, fck,test

18,419 22,199 26,939 31,720 36,519 41,334

Empirical acceptance distance of concrete compressive strength with Weibull distribution, N/mm2, fcm,test –  fck,test

5,581 5,801 6,061 6,280 6,481 6,666

Acceptance constant of according to the number example  
(acceptance distance / standard deviation)

1,641 1,681 1,732 1,769 1,800 1,826
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Figure 10: Diagrams of Step 1 of the solution for the numerical examples. Curves for the single-parameter generalized (GEV) density function for the 
lower Weibull distribution

Figure 11: Diagrams of Step 1 of the solution procedure for the numerical examples. Curves of the single-parameter simplified density function for 
the lower Weibull distribution
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Value of the location parameter „a” can be obtained, when 
(corresponding to our basic assumption) the calculated 
mean value μWeibull,low(z|0;b;c) of the two-parameter semi-
simplified lower Weibull distribution is subtracted from 
the empirical average value of the concrete compressive 
strength (fcm,test): 

a = fcm,test – μWeibull,low(z|0;b;c)

•	 Step 4: A nomogram (Figure 8) can be constructed using 
Figures 1 - 7 in which calculated parameters of the Weibull 
distribution can be presented in their relations. 

5.  NUMERICAL EXAMPLE 
FOR EVALUATING THE 
COMPRESSIVE STRENGTH OF 
CONCRETE WITH WEIBULL 
DISTRIBUTION

Numerical examples have been solved by the calculation 
method of parameters to the Weibull distribution as 
recommended above. Initial data of the numerical examples 
are: empirical mean value of the concrete compressive 
strength, its empirical standard deviation and empirical 
skewness factor. Major results of the calculation are 
characteristics of the two-parameter Weibull distribution: the 
mean value, the values of the location parameter, the scale 
parameter, the shape parameter, as well as the empirical 
characteristic (5% fractile) value and the empirical acceptance 
distance of the concrete compressive strength following the 
Weibull distribution and its empirical acceptance distance. 
The initial data of the numerical examples based on older 
experimental results and result of the calculation are shown in 
Table 2. Solution process of the numerical examples is shown 
in Figure 9. 

 Curves have been drawn for the following cases applying 
the calculated data of the numerical examples: single-
parameter generalized extreme value distribution (GEV) 
density function for the lower Weibull distribution (Figure 
10), single-parameter simplified density function of the 
same (Figure 11), two-parameter semi-simplified density 

Figure 12: Diagrams for Step 2 of the solution procedure for the numerical examples. Curves of the two-parameter semi-simplified density function 
for the lower Weibull distribution
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Figure 14: Diagrams for Step 3 of the solution for the numerical example. Curves of the three-parameter simplified distribution function for the 
concrete compressive strength with lower Weibull distribution

Figure 13: Diagrams for Step 3 of the solution procedure for the numerical examples. Curves of the three-parameter simplified density function for 
the concrete compressive strength with the lower Weibull distribution



22 2022  • CONCRETE STRUCTURES   

function of the same (Figure 12), as well as three-parameter 
density function and distribution function of the concrete 
compressive strength characterized with lower Weibull 
distribution (Figures 13 and 14, resp.).

The 5% empirical characteristic value for the concrete 
compressive strength represented with lower Weibull 
distribution was also shown in Figure 14. Empirical 
acceptance distance of the compressive strength (fcm,test –  
fck,test) is the difference of the empirical average (fcm,test) and the 
empirical characteristic value (fck,test). Values of the difference 
in our numerical examples exceed 5.5 N/mm2, in classes 
beyond C25/30 6 N/mm2 (Table 2).

If the number n of the tested specimens is also considered, 
the acceptance distance is to be multiplied by the tn/1,645 
quotient, where tn is Student’s t-value (Federighi, 1959), 
(Stange et al., 1966). Value of the quotient for a test size with 
n = 3 is e.g. 2.92/1.645 = 1.775, for a test size with n = 5 it is 
2.132/1.645 = 1.296, for a test with n = 15 it is 1.761/1.645 = 
1.071 or for a test with n = 35 it is 1.691/1.645 = 1.028. 

6. CONCLUSIONS
1. Based on the last but one row of Table 2 we can conclude 

that the acceptance distance of the concrete compressive 
strength (performing a really skew distribution) calculated 
with the lower Weibull distribution is much higher than 
4 N/mm2 , as calculated corresponding to 8.2.1.3.2./Method 
A section of the EN 206:2013+A2:2021 standard pertinent 
to the initial production, and higher than 1.48×σtest N/mm2 

corresponding to 8.2.1.3.2./Method B section (continuous 
production) of the same standard.

2. Consequetly, that according to the EN 206:2013+A2:2021 
and the subsequent Hungarian product standard 
MSZ 4798:2016 with certain concrete compressive 
strength class (e.g. C40/50) has actually a lower average 
compressive strength – which is the basis for design of 
concrete composition – which takes into account the 
average compressive strength of the standards Eurocode 
(EN 1990:2002+A1:2005) and Eurocode 2 (EN 1992-1- 
1:2004+A1:2014, EN 1992-2:2005, EN 1992-3:2006) for 
the same concrete compressive strength class (Kausay et 
al., 2007).

3. This already unfavorable difference in acceptance factors 
(e.g. use of 1.48 instead of 1.645) for concretes with higher 
compressive strengths increases in reality, as we have 
shown in this publication using the Weibull distribution 
according to the actual slope (skewness) of the concrete 
strengths.

4. Evaluation of the concrete compressive strength results 
with the lower Weibull distribution in the concrete stan-
dard EN 206:2013+A2:2021 would serve the safety 
and durability of our concrete and reinforced concrete 
structures. Our antecedents who used the k, skewness 
factor depending on the average compressive strength in 
the k×tn×s product (expressing the acceptance distance) 
as it was discribed in the withdrawn MSZ 4720-2:1980 
Hungarian standard valid until August 2004. This factor k 
served an approximate consideration of skewness.
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